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Abstract

Computational models of distributional semantics can ana-
lyze a corpus to derive representations of word meanings in
terms of each word’s relationship to all other words in the cor-
pus. While these models are sensitive to topic (e.g., tiger and
stripes) and synonymy (e.g., soar and fly), the models have
limited sensitivity to part of speech (e.g., book and shirt are
both nouns). By augmenting a holographic model of semantic
memory with additional levels of representations, we present
evidence that sensitivity to syntax is supported by exploiting
associations between words at varying degrees of separation.
We find that sensitivity to associations at three degrees of sep-
aration reinforces the relationships between words that share
part-of-speech and improves the ability of the model to con-
struct grammatical sentences. Our model provides evidence
that semantics and syntax exist on a continuum and emerge
from a unitary cognitive system.

Keywords: semantic memory; mental lexicon; distributional
semantics; word embeddings; holographic models; cognitive
models; semantic space; part-of-speech; language production

Introduction

How do humans acquire, produce, and comprehend lan-

guage? To what extent does language require a specialized

cognitive capacity? And to what extent do humans learn

language the same way that humans learn any other skill,

whether it is learning to play chess or to play a piano piece?

Computational cognitive models provide a means of inves-

tigating the extent to which basic cognitive functions play

a role in language. Computational models of learning and

memory have been able to account for a variety of psycholin-

guistic phenomena without any a priori linguistic knowledge.

Linguistics distinguishes lexical knowledge (describing

words) from syntactic processes (describing how words are

combined to form sentences). We modify an existing com-

putational model of the acquisition of lexical knowledge to

enhance its ability to provide an integrated account of the ac-

quisition of syntactic knowledge.

Our model, the Hierarchical Holographic Model (HHM),

is based on BEAGLE (Jones & Mewhort, 2007). BEAGLE is

a distributional semantics model that uses holographic mem-

ory (Plate, 1995). Distributional models infer the meaning of

words from how the words co-occur in a corpus. BEAGLE’s

algorithm is not specific to language and has been applied to

recognition memory (Kelly, Kwok, & West, 2015), learning

a decision-making task, math cognition, and playing simple

games (Rutledge-Taylor, Kelly, West, & Pyke, 2014).

Building on work by Grefenstette (1994), we define or-

ders of association as a measure of the relationship between

words. This notion is related to degrees of separation, a mea-

sure of the distance between two nodes in a connected graph.

First-order (direct) associations are useful for detecting

words that are related in topic (e.g., tiger and stripes) and

second-order associations are useful for detecting words that

have a degree of synonymy (e.g., tiger and lion). Distribu-

tional semantics models, such as BEAGLE, are sensitive to

both first and second-order associations.

Distributional models are weakly sensitive to part-of-

speech (e.g., book and shirt are nouns). In the semantic space

of distributional models, words tend to cluster by part-of-

speech, such that, using a classifier, these models can be used

for automated part-of-speech tagging (e.g., Tsuboi, 2014).

Distributional models are not, strictly speaking, sensitive

to these clusters, it is the work of the classifier to detect them.

While all words in a cluster will be similar to some other

words in the cluster, there may be words in the cluster that are

entirely dissimilar to each other. This is because similarity is

not transitive. These clusters are evidence of higher-order as-

sociations that all words in the cluster have to all other words

in the cluster. Thus, we propose a variant of BEAGLE that is

sensitive to arbitrarily indirect associations. This allows us to

explore how higher-order associations can be utilized to im-

prove on the ability of computational models of distributional

semantics to infer syntactic information from a corpus.

Our Hierarchical Holographic Model is not a model of syn-

tax or semantics per se, as it does not produce or compre-

hend utterances. However, HHM generates representations

that capture knowledge of how a word is used, what words it

can be used with, and how those words should be sequenced

to form a grammatical utterance. HHM’s representations can

be situated in and utilized by a model that operates at the

utterance level (e.g., Johns, Jamieson, Crump, Jones, & Me-

whort, 2016). The objective of this research is to provide a

foundation for a single system account of the acquisition of

semantic and syntactic lexical knowledge that is based on a

general-purpose computational model of human memory.

In this paper, we explain the theory and mechanics of the

Hierarchical Holographic Model and show how the model

can be used to learn part of speech relations between words

and to order words into grammatical sentences. In sum, we

present contributions to a theory of human memory, describe

a computational model based on that theory, and evaluate the

model on human linguistic behavior.

Theory

In what follows, we define orders of association as a mea-

sure of the relationship between a pair of words in memory.

We describe the BEAGLE model of distributional semantics
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Table 1: Example of a third order association between eagles and birds.

Sentences

eagles soar over trees airplanes soar through skies dishes are over plates squirrels live in trees

birds fly above forest airplanes fly through skies dishes are above plates squirrels live in forest

(Jones & Mewhort, 2007), based on the holographic model

of memory (Plate, 1995). We then propose the Hierarchical

Holographic Model (HHM), a variant of BEAGLE capable of

detecting arbitrarily high orders of association.

Orders of Association

Imagine a graph where each word in the lexicon is a node con-

nected to other words. A pair of words are connected once for

each time they have occurred in the same context. In human

cognition, that context is defined by the limited capacity of

working memory. In our model, the context is a window of 5

to 10 words to the left and right of the target word. Order of

association is the length of a path between two words in the

graph. The strength of that order of association is the number

of paths of that length between the two words.

First order association is when two words appear to-

gether. In the sentence “eagles soar over trees”, the words ea-

gles and trees have first order association. Words with strong

first order association (i.e., frequently appear together) are of-

ten related in topic, such as the words tiger and stripes.

Second order association is when two words appear with

the same words. In the sentences “airplanes soar through

skies” and “airplanes fly through skies”, soar and fly have

second order association. Words with strong second order as-

sociation are often synonyms.

Third order association is when two words appear with

words that appear with the same words. Given the sentences

in Table 1, the words eagles and birds have neither first nor

second order association, but do have third order association.

Fourth order and higher One can keep abstracting to

higher orders of association indefinitely. Eventually, all

words are related to all other words in the language.

No association A pair of words with no path between them

have no association of any order. For an agent that knows

only the eight sentences in Table 1 as well as a ninth sentence

“cars drive on streets”, the words car and eagle have no as-

sociation. In real language data, two words will only have no

association if they belong to two different languages.

The definition of orders of association that we provide here

is an application of the concept of degrees of separation in

a network to words in a language, and is a generalization

of Grefenstette (1994)’s first-order, second-order, and third-

order affinities between words.

According to Barceló-Coblijn, Corominas-Murtra, and

Gomila (2012), the point at which a child transitions from

speaking in utterances of one or two words to speaking in

full sentences is the point at which the child’s knowledge of

the relationships between words forms a dense ”small world”

graph, typical of an adult vocabulary, where all words are sev-

eral steps from all other words in the graph. We hypothesize

that learning these longer range connections between words

is necessary to construct novel syntactic utterances.

To define orders of association, we have described the lex-

icon as a connected graph. This graph is not explicitly rep-

resented by the computational models we use. The BEAGLE

model defines a space rather than a graph, where words are

points in space. Words close together in BEAGLE’s space

have strong second-order association. Our Hierarchical Holo-

graphic Model (HHM) extends BEAGLE by defining a space

for each order of association. Level 1 of HHM is BEAGLE,

Level 2 represents third-order associations as distance, Level

3 represents fourth-order associations, and so on.

Previous computational models that detect third-order as-

sociations (or higher) have been clustering or classification

algorithms applied to words organized in a space of second-

order associations (e.g., Grefenstette, 1994; Tsuboi, 2014).

Conversely, HHM recursively applies the memory and learn-

ing principles it uses to detect second order associations to de-

tect higher order associations. As such, even at higher-orders,

HHM does not produce discrete categories corresponding to

noun, verb, adverb, etc., but instead produces graded repre-

sentations of lexical syntactic relationships.

We expect that fourth-order associations may be sufficient

to capture syntactic relationships. In a semantic network con-

structed from English word co-occurrence, the average mini-

mum path length between any pair of words is between 3 and

6, depending on how the network is constructed (Steyvers &

Tenenbaum, 2005). As such, we expect that by Level 3 of

HHM, many words will be related to half the lexicon.

The BEAGLE Model

In the BEAGLE model of semantic memory (Jones & Me-

whort, 2007), each word is represented by two vectors: an

environment vector that represents the percept of a word and

a memory vector that represents the concept of a word.

An environment vector (denoted by e) stands for what a

word looks like in writing or sounds like when spoken. For

simplicity, we chose not to simulate the visual or auditory

features of words (but see Cox, Kachergis, Recchia, & Jones,

2011 for a version of BEAGLE that does simulate these fea-

tures). Instead, we generate the environment vectors using

random values, as in (Jones & Mewhort, 2007). In our simu-

lations, environment vectors are generated by randomly sam-

pling values from a Gaussian distribution with a mean of zero

and a variance of 1/n, where n is the dimensionality. These



dimensions are meaningless, only the relationships between

vectors are meaningful. The number of dimensions, n, deter-

mines the fidelity with which BEAGLE stores the word co-

occurrence data, such that smaller n yields poorer encoding.

Memory vectors (denoted by m) represent the associations

a word has with other words. Memory vectors are constructed

as the model reads the corpus. Memory vectors are holo-

graphic in that they use circular convolution (denoted by ∗) to

compactly encode associations between words (Plate, 1995).

Given a sentence, for each word in the sentence, vectors rep-

resenting all sequences of words in the sentence (or grams)

that include the target word are summed together and added

to the target word’s memory vector.

For example, given the sentence, “eagles soar over trees”,

we update the memory vectors for each word in the sentence:

eagles, soar, over, and trees. Each memory vector is updated

with a sum of grams. The memory vector for the word soar,

msoar, is updated with the bigrams “eagles soar” and “soar

over”, the trigrams “eagles soar over” and “soar over trees”,

and the tetragram “eagles soar over trees”.

Each gram is constructed as a convolution of the environ-

ment vectors of the constituent words, except for the target

word, which is represented by the placeholder vector (de-

noted by φ). The placeholder vector is randomly generated

and serves as a universal retrieval cue. With the placeholder

substituted for the target word, each gram can be understood

as a question to which the target word is the answer. So,

rather than adding a representation of “eagles soar over” in

msoar, we instead add “eagles ? over”, i.e., “What was the

word that appeared between eagles and over?”. Each mem-

ory vector can be understood as the sum of all questions to

which that memory vector’s word is an appropriate answer.

For example, given “eagles soar over trees”, we add “ea-

gles ?”, “? over”, “eagles ? over”, “? over trees”, and “eagles

? over trees” to msoar as follows:

msoar,t+1 = msoar,t + Pbefore(eeagles) ∗ φ + Pbefore(φ)

∗ eover + Pbefore(Pbefore(eeagles) ∗ φ)

∗ eover + Pbefore(Pbefore(φ) ∗ eover) ∗ etrees

+Pbefore(Pbefore(Pbefore(eeagles)∗φ)∗eover)∗etrees

(1)

where t is the current time step, all vectors m, e, and φ have

n dimensions, and Pbefore is a permutation matrix used to in-

dicate that a word occurred earlier in the sequence. Pbefore

is constructed by randomly permuting the rows of the n x n

identity matrix. Multiplying a vector v by Pbefore results in

the permuted vector Pbeforev.

While BEAGLE is a model of lexical semantics, vari-

ants of BEAGLE have been applied to non-linguistic mem-

ory and learning tasks, such as learning sequences of ac-

tions for strategic game play (Rutledge-Taylor et al., 2014).

We previously proposed a variant of BEAGLE (Kelly et al.,

2015) that learns sets of property-value pairs (e.g., colour:red

shape:octagon type:sign label:stop) of the kind used by the

ACT-R cognitive architecture (Anderson & Lebiere, 1998).

Thus, the BEAGLE algorithm can be applied to any prob-

lem domain that can be translated into discrete symbols. This

holds true for the Hierarchical Holographic Model (HHM).

While we evaluate HHM in this paper in terms of its ability to

account for properties of natural language, HHM is intended

as a general model of learning and memory.

Hierarchical Holographic Model

The Hierarchical Holographic Model (HHM) is a series of

BEAGLE models, such that the memory vectors of one model

serves as the environment vectors for the next model. Level

1 is a standard BEAGLE model with randomly generated en-

vironment vectors. Once Level 1 has been run on a corpus,

Level 2 is initialized with Level 1’s memory vectors as its en-

vironment vectors. Level 2 is run on the corpus to generate

a new set of memory vectors, which in turn are used as the

environment vectors for the next level, and so on, to generate

as many levels of representations as desired.

To use the memory vectors of a previous level as the envi-

ronment vectors for the next, one must normalize and ran-

domly permute the vectors (Kelly, Blostein, & Mewhort,

2013). For level l + 1, and all words i, the environment vec-

tors for that level are:

(2)el+1,i = Pgroup(
ml,i

√
ml,i • ml,i

)

where Pgroup is a random permutation used to transform mem-

ory vectors into environment vectors and • is the dot product.

The levels in HHM are virtual mental constructs that could

all be represented within a single fully distributed neural

structure. There is no limit to the number of such levels that

could exist in the mind, as they are not physical constructs.

The levels in HHM can be understood as the products

of memory re-consolidation, the process of revisiting expe-

riences and recording new information about those experi-

ences. The different levels of representation are stored sep-

arately from each other in the model for the purpose of ex-

amining the differential effects of representations that encode

lower and higher orders of associations. The different levels

are not necessarily separate memory systems.

Experiments

In what follows, we show that the Hierarchical Holographic

Model (HHM) is able to detect third-order associations using

a small example data set (Experiment 1). Running HHM on a

corpus of novels from Project Gutenberg, we show that sen-

sitivity to third or fourth order associations strengthens sim-

ilarity between words that are the same part of speech (Ex-

periment 2) and improves the ability of the model to order

words into grammatical sentences (Experiment 3). These re-

sults show that HHM works as intended and that higher-order

associations provide useful language data.

Experiment 1: Small Example Data Set

Higher levels of the model are sensitive to higher orders of

association, as demonstrated by an example data set consist-

ing of the eight sentences in Table 1 as well as an unrelated



control sentence, ”cars drive on streets”. This is a toy exam-

ple chosen to provide a clear illustration of how HHM works.

We believe this toy example is important because understand

how HHM behaves in this example is critical to understand-

ing how HHM behaves on real language data.

HHM was run with 1024 dimensional vectors and three

levels of representations. In the nine sentences of this exam-

ple, there are 21 unique words, and therefore 210 unique pairs

of words. We can characterize the behavior of HHM by how

the word pairs change in similarity across levels. In Figure 1,

of the 210 word pairs, we graph the 24 word pairs that have

non-negative similarity by Level 3. Of those 24 pairs, we la-

bel the 10 pairs with the most similarity.

The memory vectors for words with second order associ-

ation, such as soar and fly, are close on Level 1 (cosine =

0.51) and closer by Level 3 (cosine = 0.67). Words eagle and

bird, which have only third order association, are unrelated

on Level 1 (cosine = -0.01) but are the fifth most similar word

pair by Level 3 (cosine = 0.33).

Figure 1: Cosines between word pairs across levels.

These results provide a simple example of the effect of the

higher levels. Each memory vector at Level 1 is constructed

as a sum of convolutions of environment vectors. As such,

the memory vectors at Level 1 encode first order associations

with respect to the environment vectors, measuring the fre-

quency with which each word co-occurs with other words

and sequences of words. The cosines between memory vec-

tors are a measure of second-order association, the degree to

which the two words co-occur with the same words. The al-

gorithm that produces Level 1 transforms data that captures

first-order association (co-occurrence) into data that captures

second-order associations. The algorithm is a step, and by

repeating it to produce higher levels, we can build a staircase.

Level 1 of the model cannot detect third-order associations.

A pair of words with third-order association, but not first or

second, do not appear together in the same sentence and do

not co-occur with the same words. As such, the memory

vectors for a pair of words with only third-order association

will be constructed from disjoint sets of vectors. At Level 1,

m1,eagles is a sum of convolutions of e1,soar, e1,over, e1,forest,

whereas m1,birds is a sum of convolutions of e1,fly, e1,above,

e1,trees. As Level 1 environment vectors are approximately

orthogonal, the memory vectors constructed from them will

also be approximately orthogonal. As a result, m1,eagles and

m1,birds are approximately orthogonal (cosine = -0.01).

But at higher levels, the environment vectors are no longer

orthogonal. Level 2 environment vectors are the Level 1

memory vectors. As a result, e2,soar is similar to e2,fly (co-

sine = 0.51), e2,over is similar to e2,above (cosine = 0.46), and

e2,forest is similar to e2,trees (cosine = 0.43). Even though

m2,eagles and m2,birds are still constructed from disjoint sets of

environment vectors, because the vectors that they are con-

structed from are similar, m2,eagles and m2,birds are somewhat

similar (cosine = 0.20). As the memory vectors for the pairs

soar and fly, above and over, and forest and trees are more

similar at Level 2 than at Level 1 (see Figure 1), the environ-

ment vectors for them will be more similar at Level 3 than

Level 2, which increases the similarity between eagles and

birds at Level 3 (cosine = 0.33).

Experiment 2: Part of Speech

We trained HHM on a corpus of novels from Project Guten-

berg. The corpus is 10 238 600 sentences with 145 393 172

words and 39 076 unique words. HHM read the corpus one

sentence at a time. Within each sentence, HHM used a mov-

ing window of 21 words, 10 words to the left and right of a

target word. In that window, all grams that included the target

word, from bigrams up to 21-grams, were encoded as convo-

lutions of environment vectors and summed into the target

word’s memory vector. We used 1024 dimensional vectors.

Using WordNet (Princeton University, 2010) and the Moby

Part-Of-Speech list (Ward, 1996), we assigned a part of

speech tag to each word in the 39 076 word vocabulary. Here

we use similarity between words that are the same part-of-

speech (noun, verb, adjective, etc.) as a proxy measure for

knowledge that those words can be used in similar ways.

To examine the effect of third-order associations, we com-

pare Levels 1 and 2. We limit our analysis to words with at

least 1000 occurrences in the corpus, as these words will have

the most robust vector representations, and to word pairs that

increased or decreased in similarity the most between levels.

As shown in Table 2, of the 1000 word pairs that increased

the most in similarity from Level 1 to 2, 71% of those words

have matching part-of-speech: 48% are partial matches (e.g.,

associated and searching are both verbs, but searching is also

an adjective) and 23% are exact matches (e.g., focused and

emerging can both be an adjective or a verb).

In total, 13% of all pairs of words in the lexicon are ex-

act matches (see Table 2). Among the 1000 word pairs that

increased the most from Level 1 to Level 2, there are signifi-

cantly more (23%) exact matches than would be expected in

a random sample from the set of all word pairs (p < 0.0001).

Of the 1000 word pairs that decreased in similarity the most

from Level 1 to 2, only 1% are exact matches (e.g., both local



Table 2: Top 1000 word pairs that changed in similarity the

most at each level, categorized by part-of-speech match.

Level Change Exact Partial Mismatch

total - 13% 45% 42%

1 to 2 increase 23% 48% 29%

1 to 2 decrease 1% 53% 46%

2 to 3 increase 26% 44% 30%

2 to 3 decrease 0% 1% 99%

and wizard can be used as an adjective and a noun), which is

significantly fewer than chance (p < 0.0001).

From Level 2 to 3, we find that 26% of the word pairs that

increased in similarity the most are exact matches, which is

significant (p < 0.0001). Of the word pairs that decreased

in similarity from Level 2 to 3, zero were exact matches and

only 1% were partial matches (e.g., never and oh can both

be exclamations, but never is more commonly an adverb),

which, again, was significantly less than chance (p< 0.0001).

In sum, we find that the sensitivity to third order (Level 2)

and fourth order associations (Level 3) strengthens similari-

ties between words with matching part of speech and weakens

similarities between words with mismatching part of speech.

Experiment 3: Word Ordering Task

Do higher-order associations provide additional useful infor-

mation about how to sequence words into a sentence? When

given an unordered set of words that can be arranged into a

sentence, are higher levels of HHM better able to find the

grammatical ordering? We replicate a task from Johns et al.

(2016). In this task, the model is given a set of n words from

an n-word sentence that is not present in the exemplar set.

The model must discern which of the n! possible word order-

ings is the grammatical, original ordering.

Figure 2: Percentage of test sentences correctly ordered by

model as a function of vectors used to represent words.

The exemplar set consists of 125 000 seven-word sentences

randomly sampled from the Project Gutenberg corpus. Sen-

tences in the exemplar set have no words with frequency less

than 300. All test set sentences and permutations thereof are

excluded from the exemplar set.

We embed the word representations generated by each

level of HHM in a minimal exemplar model of syntax based

on Johns et al. (2016)’s work. Each sentence in the exemplar

set is represented as a pair of vectors in the model. One vec-

tor is an unordered set of words constructed as a sum of the

vectors representing each word in the sentence. The second

vector is the ordered sequence of the words in the sentence,

constructed as a holographic representation (Plate, 1995).

Test items are a set of 200 seven-word sentences taken from

Johns et al. (2016). Test items have simple syntactic construc-

tion and consist of words that occur at least 300 times in the

corpus. Test items are presented to the model as an unordered

set of words. The model first selects the exemplar sentence

most similar to the test item, as measured by cosine between

the vectors for the unordered sets. Then, of the 7! possible

orderings of the words in the test item, the model selects the

ordering most similar to the selected exemplar sentence, as

measured by the cosine between the vectors representing the

ordered sequences of words. The ordering is judged correct if

it matches the original ordering of the words in the test item.

HHM is trained on the full Project Gutenberg corpus. We

trained HHM twice: once using a 21 word window, comput-

ing bigrams to 21-grams within that window, and once using

an 11 word window, computing bigrams to 5-grams within

that window. The 5-gram window is standard for the BEA-

GLE model. Words are represented by either random vectors

(Level 0), BEAGLE memory vectors (Level 1), Level 2 mem-

ory vectors, or Level 3 memory vectors. At Levels 1, 2, and

3, we test both the 5-gram and 21-gram variants.

To ensure that results are not contingent on a particular

sample of 125 000 exemplar sentences, results are averaged

across 50 random samples. Mean percent correct across the

50 samples is shown in Figure 2 (Error bars indicate standard

error). To test for statistical significance across the seven con-

ditions, we used a repeated measures permutation test.

Level 0 gets a mean of 35.1% of the sentences correct using

random vectors, i.e., by selecting the exemplar sentence with

the most words in common with the test item.

At Level 1, we find no effect of window size (p > 0.05).

Level 1 outperforms Level 0 (p < 0.0001) with a mean of

57% correct. Level 1 uses BEAGLE memory vectors, i.e.,

selects the exemplar sentence which has the most semantic

similarity to the test item.

Level 2 outperforms Level 1 (p < 0.0001), demonstrating

the value of third-order associations. Here we find an effect

of window size (p < 0.01). The 21-gram window gets 59.5%

correct to the 5-gram window’s 58.6% correct.

At Level 3, we find the 21-gram window again outperforms

the 5-gram window (p < 0.0001). With the 21-gram window,

Level 2 and Level 3 are not significantly different (59.5% vs.

60.0%, p> 0.05). With the 5-gram window, Level 3 gets only



55.6% correct, significantly worse than Level 2 (p < 0.0001).

Our results show that for the task of ordering words into

grammatical sentences, a model that uses third or fourth order

associations between words outperforms a model that uses

first or second order associations. Our results also show that

higher levels of HHM benefit from n-grams larger than 5-

grams (whereas 5-grams may be sufficient for BEAGLE).

Conclusions

We find that the higher levels of the Hierarchical Holographic

Model (HHM) exploit higher-order associations to gain syn-

tactic information. Sensitivity to third order (Level 2) or

fourth-order associations (Level 3) reinforces relationships

between words that share part-of-speech and improves the

model’s ability to order words into grammatical sentences.

However, we find that higher levels of HHM are more use-

ful when using larger n-grams. At higher levels, HHM pro-

gressively loses the ability to make fine distinctions between

small n-grams as the representations for the words that com-

pose the n-grams become increasingly similar. For example,

”she grinned” and ”he smiled” may be represented by identi-

cal or nearly identical bigrams at higher levels.

At the same time, higher levels begin to be able to make use

of large n-grams. At lower levels, large n-grams are unique,

and thus do not provide useful information about the rela-

tionships between words. At higher levels, large n-grams are

similar to other large n-grams. For example, while the 7-gram

”you are as gregarious as a locust” may occur only once in a

corpus, at higher levels of HHM, this 7-gram comes to resem-

ble other 7-grams, such as ”he was as strong as an ox”.

Gruenenfelder, Recchia, Rubin, and Jones (2016), model-

ing word association norms, find that a hybrid model that uses

both first and second order associations better matches human

data. We note that on the word ordering task, while, on av-

erage, Levels 2 and 3 with the 21 word window produced the

best results, Level 1 often correctly ordered sentences that

Levels 2 or 3 got wrong. We speculate that a model that uses

all three levels could outperform a model that uses only one

level at a time. We hypothesize that human memory is able

to use relations between concepts at varying levels of abstrac-

tion as needed to meet task demands.

The Hierarchical Holographic Model is not intended as

strictly a language model but as a model of human memory

with the ability to detect arbitrarily abstract associations. The

present work is a proof of concept of the utility of HHM as

a model and preliminary evidence that higher-order associa-

tions are relevant to understanding human cognition.
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